dismiss

Clean Sweep Live Auction on Wed. May 1st. Click to view the full inventory

DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Posição atual:
>
> This Story


Início de uma sessão ou Registo to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

More Future Of...

The future of interventional radiology Insights from Dr. M. Victoria Marx, 2018-2019 president of the Society of Interventional Radiology

The future of pediatric imaging Insights from Dr. Diku Mandavia, chief medical officer for FUJIFILM Medical Systems U.S.A. Inc. and FUJIFILM SonoSite Inc.

Making the invisible visible: The future of AI in imaging Insights from Steve Tolle, vice president of global strategy and business development for IBM Watson Health

DR to meet DNA: The future of X-ray Digital X-ray will soon capture motion and provide a vast array of new insights to diagnostic imaging

The present and future of spectral imaging Insights from Christian Eusemann, Ph.D., vice president of collaborations at Siemens Healthineers North America

See All Future Of...  

More Voices

Want to reduce readmissions? Let’s start with keeping patients healthier Insights from Robin Hill, chief clinical officer at Vivify Health

My thoughts on reverse expos The Jacobus Report

Q&A with ExpoMed's event director, Maurilio Zertuche G. ExpoMed is Mexico's biggest healthcare event, so we spoke to the organizer to find out why you don't want to miss it

Q&A with Dr. Steve Narang, CEO, Banner-University Medicine Phoenix Sharing insights on his background in medicine and the philosophy of his organization

Ed Sloan and I remember Dan Wheeler The Jacobus Report

Surgery gets a little more futuristic with single-incision robotic procedures UT Southwestern's Dr. Jeffrey Cadeddu discusses the da Vinci SP surgical system

The benefits of intraoperative MR Q&A with Dr. John Huston Mayo Clinic neuroradiologist discusses what the advanced capabilities mean for patients – as well as providers

Leon Chen

The future of AI in radiology

From the November 2017 issue of DOTmed HealthCare Business News magazine
AI, as a field, has undergone numerous periods of exuberance over the past decades.

These waves of promise and excitement invariably make their way into medicine, but in the past, they have been tempered by the realities of medicine, when evidence of real-world performance is sought. Now, there is a palpable sense that this time around, things are different, that we are on the precipice of a revolution, rather than mere incremental evolution of previous technologies. The reason, of course, is deep learning. Broadly speaking, deep learning is not a single technological breakthrough, but rather a collection of accumulated mathematical principles, data structures and optimization algorithms, which when applied to the right data, produce results on certain tasks that far outperform previous methods. While it has seen broad application across almost all data types, visual data is where it has had the greatest tangible successes. Radiology is, therefore, one of its most obvious applications.

Story Continues Below Advertisement

Servicing GE Nuclear Medicine equipment with OEM trained engineers

We offer full service contracts, PM contracts, rapid response, time and material,camera relocation. Nuclear medicine equipment service provider since 1975. Click or call now for more information 800 96 NUMED



One of the attractions of deep learning is that less intensive data preparation is typically required. There is a perception that one can just feed the neural network raw pixels of say, any chest X-ray. In practice, it is not quite this magical. Good data science and engineering practices are still paramount in building such systems. One such data science practice is ensuring the input data is of sufficient quality and quantity. Almost all practical applications of machine learning today are supervised, meaning accurate labels of your ultimate objective is required to train your models on. Not only is obtaining these labels a laborious process, it is an expensive one given the human costs.

We are only in the very early phases of applying deep learning to medical imaging, though the pace of abstracts and papers being published on the topic is rapidly picking up. We are seeing applications of all types, from classification of normal versus pathology, to higher-level tasks such as localization, segmentation and quantification. Most of these current applications are relatively simple and restricted to single-task problems. An article published by Lakhani and Sundaram in Radiology earlier this year demonstrated a 96 percent accuracy rate in classifying tuberculosis on 150 plain chest X-rays in a holdout test set. The authors took off-the-shelf neural networks developed for general image recognition, trained them on this new task and obtained excellent results. One can imagine hundreds of such algorithms that can be trained today in this straightforward manner. This is before we even think about building up the complexity with higher-order reasoning, multi-modal models such as images plus text or images plus genomics, or composition of neural networks in a modular fashion. There are so many potential applications that we can already create using simple off-the-shelf neural networks, so what are the bottlenecks?
  Pages: 1 - 2 >>

Related:


You Must Be Logged In To Post A Comment

Anuncie
Aumente a Sua Perceção da Marca
Leilões + Vendas Privadas
Comece
O mais melhor preço
Comprar Equipamento/Peças
Encontre
O preço o mais baixo
Notícia diária
Leia
A notícia a mais atrasada
Diretório
Browse tudo
DOTmed Usuários
Ética no DOTmed
Veja o nosso
Programa das éticas
O ouro parte o programa do vendedor
Receba PH
Pedidos
Programa do negociante do serviço do ouro
Receba RFP/PS
Pedidos
Fornecedores de Healthcare
Veja tudo
Ferramentas de HCP
Trabalhos/Treinamento
Achado/suficiência
Um trabalho
Parts Hunter +EasyPay
Comece as peças
Citações
Certificado recentemente
Vista recentemente
Usuários certificados
Recentemente Rated
Vista recentemente
Usuários certificados
Central Rental
Equipamento do aluguel
Para menos
Vender Equipamentos/Peças
Comece
A maioria de dinheiro
Preste serviços de manutenção ao Forum dos técnicos
Ajuda do achado
E conselho
Simples RFP
Comece o equipamento
Citações
Mostra de comércio virtual
Serviço do achado
Para o equipamento
O acesso e o uso deste local são sujeitos aos termos e às condições do nosso OBSERVAÇÃO LEGAL & OBSERVAÇÃO DA PRIVACIDADE
Propriedade de e proprietário DOTmeda .com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
TODOS OS DIREITOS RESERVADOS