JANESVILLE, Wis., Oct. 17, 2024 /PRNewswire/ -- SHINE Technologies, a next-generation fusion company, and WARF Therapeutics, a drug discovery program by the Wisconsin Alumni Research Foundation (WARF), today announced promising pre-clinical research results from collaborative efforts with Advanced Radiotheranostics Lab at the University of Wisconsin-Madison. The studies showed that WT-7695 and ART-101 – treatments that leverage SHINE's non-carrier added lutetium-177 (Lu-177) chloride, Ilumira – have the potential to increase life span and be more effective in treating kidney and prostate cancer, respectively.
This groundbreaking research stems from a collaboration between the Advanced Radiotheranostic Lab, led by Dr. Reinier Hernandez at the University of Wisconsin-Madison, WARF Therapeutics, and SHINE Technologies. WARF Therapeutics has heavily invested to accelerate the development of theranostic radiopharmaceutical programs at UW-Madison, like WT-7695 and ART-101, while SHINE Technologies provides the high-quality lutetium-177 integral to this innovative cancer treatment approach.
When paired with innovative cancer-seeking radiopharmaceutical agents that precisely target tumors and metastases, Lu-177 delivers a potent dose of radiation to kill cancer cells while minimizing harm to healthy tissue. Research has shown that radiopharmaceuticals have the potential to reduce the risk of side effects from treatment compared to other cancer therapies.
The initial pre-clinical results of 177Lu-WT-7695 show unprecedently high tumor uptake at 24h and significant tumor retention at seven days. Consequently, treatment studies lead to significant tumor regression and 100% survival in a mouse model of kidney cancer. WT-7695 is a best-in-class CA9 radiopharmaceutical and is moving into IND-enabling studies in early 2025.
Other studies led by Dr. Hernandez's lab show that 177Lu-ART-101, a new treatment for advanced prostate cancer, performs better than the current therapy, PSMA-617 (another radiopharmaceutical). The study showed that ART-101 demonstrated superior tumor growth inhibition compared to existing radiopharmaceuticals targeting the prostate specific membrane antigen. This novel compound targets cancer cells more effectively, with approximately three times more Lu-177 reaching the tumors and remaining there for an extended period. Notably, ART-101 maintained its efficacy even at lower administered activities, potentially leading to reduced side effects for patients in future clinical applications. These promising results set the stage for human trials to validate the treatment's potential to improve outcomes for prostate cancer patients.