DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Posição atual:
>
> This Story

starstarstarstarstar (1)
Início de uma sessão ou Registo to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

CT Homepage

A dose of sophistication comes to CT protocols In 2018, dose optimization means getting everyone involved

GE to provide training to at least 140 Kenyan radiographers Partnering with Society of Radiography in Kenya

Spectral CT, workflow and dose reduction drive new CT scanner and software releases

Purchasing insight: Navigating the CT market Important considerations when it's time to shop around

IMRIS and Siemens take on growing hybrid OR neurosurgical market together Support sales for MR, CT and angiography

Stryker inks two partnerships for enhanced surgical guidance Offering whole-brain tractography and detail-rich imaging

Could proposed EPA rule change lead to less stringent radiation exposure regulations? Experts warn looser guidelines could harm patients and providers

The present and future of spectral imaging Insights from Christian Eusemann, Ph.D., vice president of collaborations at Siemens Healthineers North America

Low-dose, mobile CT technology powers the future of lung care Recounting benefits it has brought to the Levine Cancer Institute

Congress to evaluate bill on CT colonography coverage Would expand coverage of CT colonography for colorectal cancer

Glassbeam has expanded its technology for
detecting anomalies in components of
CT scanners such as tube temperature

Glassbeam unveils AI anomaly detection for imaging modality maintenance

por John R. Fischer , Staff Reporter
Maintenance and repair for CT scanners may soon be more immediate, less frequent and more affordable following the upcoming expansion of Glassbeam Inc.’s anomaly detection technology.

The machine data analytics company elaborated on the development at the AAMI 2018 Conference and Expo in Long Beach, California, referring to it as a part of its approach for utilizing AI capabilities to detect and alert providers to changes in components of computed tomography scanners from tube temperature to waterflow. They plan to eventually include other critical imaging modalities such as MR.

Story Continues Below Advertisement

Dunlee announces the relaunch of DA135 CT/e, DA165NP and Akron tubes

Dunlee announces the return of the DA135 CT/e, DA165NP, S532B and S532Q(known as the Akron tubes) CT Replacement tubes, making its full portfolio of CT tubes for GE and Siemens CT scanners available once again.Click to learn more



“Instead of a human being saying that the temperature pressure has shot beyond portable range, the machine alerts you by looking up the historical data of the temperature reading and saying the temperature should be between this high range and this low range. That is the anomaly direction model,” Puneet Pandit, president and CEO of Glassbeam, told HCB News. “The machine will look at the historical data, create the threshold and then alert the engineers when the threshold is crossed.”

CT scanners are equipped with sensors for monitoring different variables such as water temperature, waterflow, air temperature, fan speed, and tube temperature. Though each sensor periodically records its readings to determine if tracked variables are in the normal range, the task of accurately identifying which sensor readings are in the normal range and which ones are not is complex, often leading many to use a rule of thumb to form manually-defined thresholds.

ML-based AD techniques use historical data to train a model that can be used for detecting anomalous sensor values.

With Glassbeam’s technology, providers can utilize machine learning-based AD techniques to predict anomalies from historical data sets and address issues earlier, saving millions in maintenance costs, as well as being able to plan out more efficiently strategic actions for the management of their imaging modalities.

In addition to detecting single abnormal readings, the technology may be used to detect combinations of these readings from two or more different sensors, further helping Glassbeam raise mean time between failures and machine uptime from the industry standard range of 96-97 percent to more than 99.5 percent.

The expansion is the second phase of an initiative launched in February in which machine learning was deployed to detect with high accuracy tube failure in CTs, seven to ten days prior to the actual occurrence of such events.
  Pages: 1 - 2 >>

CT Homepage


You Must Be Logged In To Post A Comment

Anuncie
Aumente a Sua Perceção da Marca
Leilões + Vendas Privadas
Comece
O mais melhor preço
Comprar Equipamento/Peças
Encontre
O preço o mais baixo
Notícia diária
Leia
A notícia a mais atrasada
Diretório
Browse tudo
DOTmed Usuários
Ética no DOTmed
Veja o nosso
Programa das éticas
O ouro parte o programa do vendedor
Receba PH
Pedidos
Programa do negociante do serviço do ouro
Receba RFP/PS
Pedidos
Fornecedores de Healthcare
Veja tudo
Ferramentas de HCP
Trabalhos/Treinamento
Achado/suficiência
Um trabalho
Parts Hunter +EasyPay
Comece as peças
Citações
Certificado recentemente
Vista recentemente
Usuários certificados
Recentemente Rated
Vista recentemente
Usuários certificados
Central Rental
Equipamento do aluguel
Para menos
Vender Equipamentos/Peças
Comece
A maioria de dinheiro
Preste serviços de manutenção ao Forum dos técnicos
Ajuda do achado
E conselho
Simples RFP
Comece o equipamento
Citações
Mostra de comércio virtual
Serviço do achado
Para o equipamento
O acesso e o uso deste local são sujeitos aos termos e às condições do nosso OBSERVAÇÃO LEGAL & OBSERVAÇÃO DA PRIVACIDADE
Propriedade de e proprietário DOTmeda .com, Inc. Copyright ©2001-2018 DOTmed.com, Inc.
TODOS OS DIREITOS RESERVADOS