Over 150 New York Auctions End Today - Bid Now
Over 1350 Total Lots Up For Auction at Three Locations - NJ 04/25, MA 04/30, NJ Cleansweep 05/02

Ultrasound solves an important clinical problem in diagnosing arrhythmia

Press releases may be edited for formatting or style | March 26, 2020 Cardiology Ultrasound
New York, NY--March 25, 2020--Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Currently, the 12-lead electrocardiogram (ECG) is the noninvasive clinical gold standard used to diagnose and localize these conditions, but it has limited accuracy, cannot provide an anatomical tool to visually localize the source of the arrhythmia, and depending on which clinician is looking at the signals, there might be some interpretation variability.

Researchers at Columbia Engineering announced today that they have used an ultrasound technique they pioneered a decade ago--Electromechanical Wave Imaging (EWI)--to accurately localize atrial and ventricular cardiac arrhythmias in adult patients in a double-blinded clinical study. VIDEO: https://youtu.be/IvQQyYabhME

"This study presents a significant advancement in addressing a major unmet clinical need: the accurate arrhythmia localization in patients with a variety of heart rhythm disorders," says Natalia Trayanova, Murray B. Sachs Endowed Chair and professor of biomedical engineering and medicine Medicine, and director of the Alliance for Cardiovascular Diagnostic and Treatment innovation at Johns Hopkins University, who was not involved with the study. "The non-invasive nature of EWI using standard hospital hardware, and its ability to visualize the arrhythmia sources in 3D render it an attractive component for inclusion in the clinical ablation procedure."

EWI is a high-frame-rate ultrasound technique that can noninvasively map the electromechanical activation of the heart; it is readily available, portable, and can pinpoint the arrhythmic source by providing 3D cardiac maps. The new study, published online in Science Translational Medicine, evaluated the accuracy of EWI for localization of various arrhythmias in all four chambers of the heart prior to catheter ablation: the results showed that EWI correctly predicted 96% of arrhythmia locations as compared with 71% for 12-lead electrocardiogram (ECG).

"We knew EWI was feasible in individual patients and we wanted to see if it made a difference in the clinical setting where they treat many people with different types of arrhythmias," says Elisa Konofagou, Robert and Margaret Hariri Professor of Biomedical Engineering and Radiology (Physics) who directed the study. Her group has been working on several studies with electrophysiologists in the cardiology department at Columbia University Irving Medical Center (CUIMC) and for the purpose of this study, the Konofagou team partnered with Elaine Wan, Esther Aboodi Assistant Professor of Medicine at CUIMC and co-senior author, who saw the potential of this new technology and wanted to work together.

You Must Be Logged In To Post A Comment